375 research outputs found

    Planets Formed in Habitable Zones of M Dwarf Stars Probably are Deficient in Volatiles

    Get PDF
    Dynamical considerations, presented herein via analytic scalings and numerical experiments, imply that Earth-mass planets accreting in regions that become habitable zones of M dwarf stars form within several million years. Temperatures in these regions during planetary accretion are higher than those encountered by the material that formed the Earth. Collision velocities during and after the prime accretionary epoch are larger than for Earth. These factors suggest that planets orbiting low mass main sequence stars are likely to be either too distant (and thus too cold) for carbon/water based life on their surfaces or have abundances of the required volatiles that are substantially less than on Earth.Comment: 11 pages, 1 figure, Astrophysical Journal Letters, in pres

    High Resolution Near-Infrared Spectra of Protostars

    Get PDF
    We present new high resolution (R = 21,000) near-infrared (2 microns) spectroscopic observations of a sample of Class I and flat-spectrum protostellar objects in the rho Ophiuchi dark cloud. None of the five Class I spectra show CO v = 0 -- 2 absorption features, consistent with high K-band continuum veilings, 4 <= r_k <= 20 and fast stellar rotation, assuming that the underlying protostellar photospheres are of late spectral type, as is suggested by the low luminosities of most of these objects. Two of the flat-spectrum protostellar objects also show no absorption features and are likely to be highly veiled. The remaining two flat-spectrum sources show weak, broad absorptions which are consistent with an origin in quickly rotating (v sin i ~ 50 km / s) late-type stellar photospheres which are also strongly veiled, r_k = 3 - 4. These observations provide further evidence that: 1)-Class I sources are highly veiled at near-infrared wavelengths, confirming previous findings of lower resolution spectroscopic studies; and 2)- flat-spectrum protostars rotate more rapidly than classical T Tauri stars (Class II sources), supporting findings from a recent high resolution spectroscopic study of other flat-spectrum sources in this cloud. In addition our observations are consistent with the high rotation rates derived for two of the Class I protostellar objects in our sample from observations of variable hard X-ray emission obtained with the ASCA satellite. These observations suggest that certain Class I sources can rotate even more rapidly than flat-spectrum protostars, near breakup velocity.Comment: 16 pages including 2 tables and 2 figures (AASTeX 5.x) to be published in The Astronomical Journal July 200

    The early evolution of Globular Clusters: the case of NGC 2808

    Full text link
    Enhancement and spread of helium among globular cluster stars have been recently suggested as a way to explain the horizontal branch blue tails, in those clusters which show a primordial spread in the abundances of CNO and other elements involved in advanced CNO burning (D'Antona et al. 2002). In this paper we examine the implications of the hypothesis that, in many globular clusters, stars were born in two separate events: an initial burst (first generation), which gives origin to probably all high and intermediate mass stars and to a fraction of the cluster stars observed today, and a second, prolonged star formation phase (second generation) in which stars form directly from the ejecta of the intermediate mass stars of the first generation. In particular, we consider in detail the morphology of the horizontal branch in NGC 2808 and argue that it unveils the early cluster evolution, from the birth of the first star generation to the end of the second phase of star formation. This framework provides a feasible interpretation for the still unexplained dichotomy of NGC 2808 horizontal branch, attributing the lack of stars in the RR Lyr region to the gap in the helium content between the red clump, whose stars are considered to belong to the first stellar generation and have primordial helium, and the blue side of the horizontal branch, whose minimum helium content reflects the helium abundance in the smallest mass (~4Msun)contributing to the second stellar generation. This scenario provides constraints on the required Initial Mass Function, in a way that a great deal of remnant neutron stars and stellar mass black holes might have been produced.Comment: 23 pages, 7 figures, in press on The Astrophysical Journa

    Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    Get PDF
    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young stellar populations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5 Msun to 0.02 Msun), has a peak near the hydrogen burning limit, and has an IMF for Brown Dwarfs which steadily decreases with decreasing mass.Comment: To appear in ApJ (1 April 2000). 37 pages including 11 figures, AAS: ver 5.

    Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    Get PDF
    We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L_bol = 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the protostellar core. We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute signifi- cantly to its near-IR continuum veiling. Its projected rotation velocity v sin i = 50 km / s is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 R_*. It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2 L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as separate files). AASTeX LaTex macros version 5.0. To be published in The Astronomical Journal (tentatively Oct 2002

    Is mass loss along the red giant branch of globular clusters sharply peaked? The case of M3

    Full text link
    There is a growing evidence that several globular clusters must contain multiple stellar generations, differing in helium content. This hypothesis has helped to interpret peculiar unexplained features in their horizontal branches. In this framework we model the peaked distribution of the RR Lyr periods in M3, that has defied explanation until now. At the same time, we try to reproduce the colour distribution of M3 horizontal branch stars. We find that only a very small dispersion in mass loss along the red giant branch reproduces with good accuracy the observational data. The enhanced and variable helium content among cluster stars is at the origin of the extension in colour of the horizontal branch, while the sharply peaked mass loss is necessary to reproduce the sharply peaked period distribution of RR Lyr variables. The dispersion in mass loss has to be <~ 0.003 Msun, to be compared with the usually assumed values of ~0.02 Msun. This requirement represents a substantial change in the interpretation of the physical mechanisms regulating the evolution of globular cluster stars.Comment: Accepted for publication in The Astrophysical Journa

    The influence of nova nucleosynthesis on the chemical evolution of the Galaxy

    Get PDF
    We adopt up-to-date yields of 7Li, 13C, 15N from classical novae and use a well tested model for the chemical evolution of the Milky Way in order to predict the temporal evolution of these elemental species in the solar neighborhood. In spite of major uncertainties due to our lack of knowledge of metallicity effects on the final products of explosive nucleosynthesis in nova outbursts, we find a satisfactory agreement between theoretical predictions and observations for 7Li and 13C. On the contrary, 15N turns out to be overproduced by about an order of magnitude.Comment: 8 pages, latex, 3 figures. To appear in "The Chemical Evolution of the Milky Way: Stars versus Clusters", eds. F. Giovannelli and F. Matteucci (Kluwer: Dordrecht

    Flared Disks and Silicate Emission in Young Brown Dwarfs

    Full text link
    We present mid-infrared photometry of three very young brown dwarfs located in the ρ\rho Ophiuchi star-forming region -- GY5, GY11 and GY310 --obtained with the Subaru 8-meter telescope. All three sources were detected at 8.6 and 11.7μ\mum, confirming the presence of significant mid-infrared excess arising from optically thick dusty disks. The spectral energy distributions of both GY310 and GY11 exhibit strong evidence of flared disks; flat disks can be ruled out for these two brown dwarfs. The data for GY5 show large scatter, and are marginally consistent with both flared and flat configurations. Inner holes a few substellar radii in size are indicated in all three cases (and especially in GY11), in agreement with magnetospheric accretion models. Finally, our 9.7μ\mum flux for GY310 implies silicate emission from small grains on the disk surface (though the data do not completely preclude larger grains with no silicate feature). Our results demonstrate that disks around young substellar objects are analogous to those girdling classical T Tauri stars, and exhibit a similar range of disk geometries and dust properties.Comment: submitted to Astrophysical Journal Letter

    PSR J1740-5340: accretion inhibited by radio-ejection in a binary millisecond pulsar in the Globular Cluster NGC 6397

    Get PDF
    We present an evolutionary scenario for the spin-up and evolution of binary millisecond pulsars, according to which the companion of the pulsar PSR J 1740-5340, recently discovered as a binary with orbital period of 32.5 hr in the Globular Cluster NGC 6397, is presently in a phase of ``radio-ejection'' mass loss from the system. At present, Roche lobe overflow due to the nuclear evolution of the pulsar companion and to systemic angular momentum losses by magnetic braking is still going on, but accretion is inhibited by the momentum exerted by the radiation of the pulsar on the matter at the inner Lagrangian point. The presence of this matter around the system is consistent with the long lasting irregular radio eclipses seen in the system. Roche lobe deformation of the mass losing component is also necessary to be compatible with the optical light curve. The "radio-ejection" phase had been recently postulated by us to deal with the problem of the lack of submillisecond pulsars (Burderi et al. 2001, ApJ, 560, L71).Comment: Accepted for publication in The Astrophysical Journa

    Constraints on the Stellar/Sub-stellar Mass Function in the Inner Orion Nebula Cluster

    Get PDF
    We present the results of a 0.5-0.9" FWHM imaging survey at K (2.2 micron) and H (1.6 micron) covering 5.1' x 5.1' centered on Theta 1C Ori, the most massive star in the Orion Nebula Cluster (ONC). At the age and distance of this cluster, and in the absence of extinction, the hydrogen burning limit (0.08 Mo) occurs at K~13.5 mag while an object of mass 0.02 Mo has K~16.2 mag. Our photometry is complete for source detection at the 7 sigma level to K~17.5 mag and thus is sensitive to objects as low-mass as 0.02 Mo seen through visual extinction values as high as 10 magnitudes. We use the observed magnitudes, colors, and star counts to constrain the shape of the inner ONC stellar mass function across the hydrogen burning limit. After determining the stellar age and near-infrared excess properties of the optically visible stars in this same inner ONC region, we present a new technique that incorporates these distributions when extracting the mass function from the observed density of stars in the K-(H-K) diagram. We find that our data are inconsistent with a mass function that rises across the stellar/sub-stellar boundary. Instead, we find that the most likely form of the inner ONC mass function is one that rises to a peak around 0.15 Mo, and then declines across the hydrogen-burning limit with slope N(log M) ~ M^(0.57+/-0.05). We emphasize that our conclusions apply to the inner 0.71 pc x 0.71 pc of the ONC only; they may not apply to the ONC as a whole where some evidence for general mass segregation has been found.Comment: Accepted for publication in the Astrophysical Journal. Preprints/tables also available at http://phobos.caltech.edu/~jmc/papers/onc
    corecore